

Fast Relative Pose Estimation using Relative Depth

JONATHAN ASTERMARK¹, YAQING DING^{1,2}, VIKTOR LARSSON¹, AND ANDERS HEYDEN¹

¹CVML, Centre for Mathematical Sciences, Lund University ²Visual Recognition Group, Faculty of Electrical Engineering, Czech Technical University in Prague

Summary

Goal: Improve estimation of the relative camera pose (\mathbf{R}, t) between two images.

- Given a sparse set of keypoint correspondences, the relative camera pose can be estimated using RANSAC.
- For each point-correspondence, in addition to the positions (x, y), we use the *relative depth*, i.e. relative distance to the same scene point in the two images.
- Using this extra constraint we can generate pose candidates for RANSAC using fewer point correspondences, compared to purely coordinate-based solvers.

Contributions

- A novel 3-point minimal solver for relative pose, using relative depths.
- We show that the relative depth can either be estimated from SIFT scales, or predicted using a simple neural network.
- Through experiments, we demonstrate that the smaller sample size leads to a significantly reduced runtime in settings with high outlier ratios, compared to purely point-based solvers.

Relative Pose Estimation

The projections x, x' of a 3D-point X are described by the camera equations

$$egin{cases} \lambda oldsymbol{x} = oldsymbol{X} \ \lambda' oldsymbol{x}' = oldsymbol{R}oldsymbol{X} + oldsymbol{t} \ \lambda' oldsymbol{x}' = oldsymbol{R}oldsymbol{X} + oldsymbol{t} \ \end{pmatrix} = \lambda' oldsymbol{x}' = \lambda oldsymbol{R}oldsymbol{x} + oldsymbol{t}$$

where λ and λ' are the depths of point X.

- Classical minimal solver requires 5 points to estimate relative pose.
- In RANSAC, number of iterations grows exponentially with sample size.

(1)

Relative Depth in Relative Pose Estimation

Idea: Leverage relative depth constraints, observed from scale changes.

- If we introduce relative depth $\sigma := \lambda' / \lambda$, we can rewrite (1) as
- $\lambda(\sigma \boldsymbol{x}' \mathbf{R}\boldsymbol{x}) = \boldsymbol{t}.$
- Relative depth inversely proportional to the relative scale in the images

$$\sigma := \frac{\lambda'}{\lambda} = \frac{f's}{fs}.$$

- Keypoint detection scale (e.g. from SIFT) can be used directly in (3).
- From (2), we introduce a novel minimal 3-point solver
 - $\sigma_1 \lambda_1 \boldsymbol{x}_1' = \lambda_1 \mathbf{R} \boldsymbol{x}_1 + \boldsymbol{t},$
 - $\sigma_2\lambda_2 x_2' = \lambda_2 \mathbf{R} x_2 + t,$ $\lambda'_3 x'_3 = \lambda_3 \mathbf{R} x_3 + t.$
- Forming the differences and taking the norm eliminates **R** and yields
 - $\|\sigma_1 \boldsymbol{x}_1' \sigma_2 \boldsymbol{\lambda}_2 \boldsymbol{x}_2'\|^2 = \|\boldsymbol{x}_1 \boldsymbol{\lambda}_2 \boldsymbol{x}_2\|^2,$ $\|\sigma_1 \boldsymbol{x}_1' - \boldsymbol{\lambda}_3' \boldsymbol{x}_3'\|^2 = \|\boldsymbol{x}_1 - \boldsymbol{\lambda}_3 \boldsymbol{x}_3\|^2,$ $\|\sigma_2 \boldsymbol{\lambda}_2 \boldsymbol{x}_2' - \boldsymbol{\lambda}_3' \boldsymbol{x}_3'\|^2 = \|\boldsymbol{\lambda}_2 \boldsymbol{x}_2 - \boldsymbol{\lambda}_3 \boldsymbol{x}_3\|^2.$
- We can find the three unknowns (red) by solving two quadratics. • In the paper we also show extension to known vertical direction (2-points).

RelScaleNet

To improve scale estimate, we introduce a simple neural network that directly regresses relative scale from pairs of image patches.

- We train on MegaDepth and supervise with MSE-loss w.r.t. ground-truth γ .
- Ground-truth relative depth calculated from Structure-from-Motion model.

(3)

(2)

- Input: A pair of image patches from neighborhood of corresponding points.
- **Output:** Estimate of relative scale $\gamma = s/s'$.

Evaluation

Relative Pose Estimation with LO/GC-RANSAC on IMC-PT

		All pairs		Hardest 5%	
RSC	Method	AUC@5°	RT(ms)	AUC@5°	RT(ms)
LO-RANSAC	5 pt. (Nistér)	56.89	15.7	12.13	42.2
	3 pt. + SIFT (Barath & Kukelova)	30.77	7.0	1.23	21.3
	3 pt. + SIFT [OURS]	54.30	13.4	8.72	2.8
	3 pt. + RelScaleNet [OURS]	<u>54.63</u>	15.0	<u>9.47</u>	2.8
GC-RANSAC	5 pt. (Nistér)	56.22	25.4	9.76	16.5
	3 pt. + SIFT (Barath & Kukelova)	50.55	11.1	2.16	6.0
	3 pt. + SIFT [OURS]	52.73	16.2	5.24	4.7
	3 pt. + RelScaleNet [OURS]	53.11	16.8	5.65	4.7

Relative Pose Estimation with LO-RANSAC on ScanNet-1500

KP.	Method	AUC@5°	AUC@10°	AUC@20°	Runtime (ms)
SIFT	5 pt. (Nistér)	11.06	21.99	33.32	8.2
	3 pt. + SIFT (Barath & Kukelova)	4.94	10.33	17.16	<u>3.7</u>
	3 pt. + SIFT [OURS]	9.90	20.59	31.96	2.9
	3 pt. + RelScaleNet [OURS]	10.43	<u>21.21</u>	32.43	2.9
SG	5 pt. (Nistér)	17.55	34.21	51.50	59.4
SP+	3 pt. + RelScaleNet [OURS]	18.39	35.46	52.24	10.4

Conclusion

Our novel 3-point solver has similar accuracy to the 5-point solver, while being significantly faster in high outlier settings.

Relative Depth Estimation

			Accuracy			
	Method	Med.↓	@0.05↑	$@0.1\uparrow$	@0.2↑	
SIFT	SIFT	0.063	0.41	0.69	0.92	
	Self-Sca-Ori	0.274	0.12	0.22	0.40	
	RelScaleNet [OURS]	0.033	0.65	0.86	0.97	
SP+SG SIFT	SIFT	0.071	0.38	0.64	0.88	
	Self-Sca-Ori	0.120	0.27	0.45	0.66	
	RelScaleNet [OURS]	0.044	0.55	0.80	0.94	
	Self-Sca-Ori	0.201	0.19	0.32	0.50	
	RelScaleNet [OURS]	0.114	0.27	0.46	0.68	