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Abstract

In this paper, we revisit the problem of estimating the
relative pose from a sparse set of point-correspondences.
For each point-correspondence we also estimate the relative
depth, i.e. the relative distance to the scene point in the two
images. This yields an additional constraint, allowing us to
use fewer matches in RANSAC to generate the pose candi-
dates. In the paper we propose two novel minimal solvers:
one for general motion and one for the case of known ver-
tical direction. To obtain the relative depth estimates, we
explore using scale estimates obtained from a keypoint de-
tector as well as a neural network that directly predicts the
relative depth for a pair of patches.

We show in experiments that while our estimates are
more noisy compared to the purely point-based solvers, the
smaller sample size leads to a significantly reduced runtime
in settings with high outlier ratios.

1. Introduction
Relative pose estimation, i.e. estimating the relative trans-
lation and orientation of two images, is an impor-
tant sub-problem in many applications in Structure-from-
Motion (SfM) and Simultaneous Localization And Map-
ping (SLAM). The most common approach is to estimate
the relative pose from a sparse set of point correspondences.
To handle outlier matches, robust estimators such as Ran-
dom Sample Consensus (RANSAC) [10] are used. These
alternate between solving for the epipolar geometry for a
minimal sample of point correspondences, and verifying
the quality of solutions on the entire set of input correspon-
dences. In the case of calibrated cameras, the minimal prob-
lem [19] has five degrees of freedom and requires five key-
point correspondences to solve. In RANSAC, the size of
the minimal sample heavily impacts the required number of
iterations. Smaller samples have less risk of being outlier-
contaminated, and thus good models can be found quicker.

In this paper, we explore relative pose estimation us-
ing additional information about the relative depth of the

Figure 1. Relative depth from scale. The relative scale of re-
gions around corresponding keypoints is inversely proportional to
the relative depth. In this paper we leverage this fact for relative
camera pose estimation.

matched keypoints, i.e. how much closer the observed point
is in the first image compared to the second. This addi-
tional information can be well-approximated by the appar-
ent relative size difference in the two images, see Figure 1.
Closer objects appear larger and vice versa. When using
scale-covariant features, such as SIFT [17], the scales from
the detector can directly give us an estimate of the relative
depth, assuming the focal lengths are known. The details
are described in Section 3.

Knowing the relative depth of the matched keypoints
gives extra geometric constraints on the camera poses. This
can be used to reduce the number of matches required in
the minimal problem from five to three. In scenarios with
high outlier ratios, this drastically reduces the number of
iterations required, as this grows exponentially with sam-
ple size. For example, if 50 % of the correspondences are
outliers, a solver using a sample size of five requires more
than 4x the number of iterations compared to a solver us-
ing a sample size of three. With 90 % outliers, this ratio is
instead 100x.

Since many of the state-of-the-art learned keypoint de-
tectors do not provide point-wise scale estimates, we also
propose a learning-based approach to estimate the relative
depth from corresponding patches. This allows us to com-
bine our approach with any modern keypoint detector.

In this paper we explore how to best integrate relative
depth information into relative pose estimation pipelines.



We make the following contributions:
• We propose a novel minimal 3-point solver that is signif-

icantly faster compared to previous work.
• We additionally propose a novel minimal 2-point solver

for the case of known vertical direction along with relative
depth estimates.

• We experimentally show that these solvers can signifi-
cantly speed up RANSAC estimators by requiring fewer
iterations to find promising pose candidates.

• We propose a deep neural network for directly estimating
the relative depths from pairs of image patches.

1.1. Related Work

The most common approach for robustly estimating rela-
tive pose from sparse point matches is using some variant of
RANSAC [10] in combination with the minimal solver [19].
While there have been many RANSAC variants proposed,
see e.g. [4, 6, 7, 14, 22], they all have the property that the
number of required iterations increase with the size of the
random sample used in the solver. Motivated by this, there
have been several works that consider variants of the min-
imal problem (requiring five point correspondences [19]),
where additional information is added to reduce the re-
quired number of point matches.

Fraundorfer et al. [11] proposed a minimal solver using
only three points for the case of partially known rotation
(e.g. known vertical direction). Later, Sweeney et al. [25]
showed that this can be formulated and efficiently solved as
a Quadratic Eigenvalue Problem (QEP).

Barath and Kukelova [3] derive an additional constraint
on the relative pose by relating the SIFT scale and orienta-
tion to affine correspondences. They show that their solver,
despite being less stable than the purely point-based five
point solver [19], when used in GC-RANSAC [4] can give
similar accuracy while being much faster. In this work we
propose to only leverage (relative) scale information and de-
rive geometric constraints from this. Our experiments show
that using the relative scale information as a proxy for rela-
tive depth yields more accurate pose estimates.

Similarly, Barath and Sweeney [5] introduce a 4pt+D
and 2pt+D solver, which leverages depths from a learned
monocular depth network. In this case, the absolute depths
are only given up to an unknown scale in each image. Pa-
rameterizing the two shared unknown scales, the authors
derive minimal estimators that jointly estimate relative pose
and the depth scales. Our work, in contrast, instead assumes
that we directly have the inter-image relative depths given.

Most similar to our work, Liwicki and Zach [16] intro-
duce a 3-point solver using relative depth for two correspon-
dences. They parameterize the relative rotation matrix using
Cayley parameterization and derive a solver using Gröbner
basis techniques. In the paper, the authors experiment with
using the relative SIFT scale to approximate the relative

depth. To compensate for SIFT scale errors, the authors use
a bisection algorithm, solving iteratively for multiple scales
inside RANSAC. This leads to an overall slower algorithm
that needs to evaluate point residuals multiple times for each
minimal sample. Guan and Zhao [12] further extend this
solver to the multi-camera setting solving the generalized
relative pose problem.

We build on the work in [16] by introducing an alter-
native parameterization for a 3-point solver using relative
depth, and show that this gives a significantly faster solver.
We also show how our formulation can be easily adapted to
integrate known vertical direction, further reducing the re-
quired number of matches, which allows us to introduce a 2-
point solver for this case. While [16] and [12] only consid-
ers using SIFT scales, we propose to use a neural network
to directly predict point-wise relative depths. This allows
our approach to be combined with other keypoint detectors
that do not provide scale estimates.

2. Relative Depth in Relative Pose Estimation
We first detail the geometry of relative pose based on rel-
ative depths. We then present a novel minimal estimator
for the general case, from three correspondences of which
two have relative depth information. Finally we extend our
approach to include known vertical directions.

The geometric constraints induced by known relative
depth in two-view relative pose estimation was first de-
scribed in [16]. Given a calibrated camera pair with the
relative pose (R, t) ∈ SO(3)×R3, the projection of a 3D-
point X ∈ R3 into the two image points x,x′ ∈ P2 is{

λx = X

λ′x′ = RX + t
⇒ λ′x′ = λRx+ t, (1)

where λ and λ′ are unknowns which we will refer to as
depths1. If the relative depth σ = λ′/λ is known, we can
rewrite (1) as

λ(σx′ −Rx) = t (2)

or equivalently, decomposed into magnitude and direction,{
λ ||σx′ −Rx|| = ||t||

t× (σx′ −Rx) = 0,

(3)
(4)

where ||·|| is the 2-norm. (3) gives no meaningful constraint
when the absolute depths are unknown, since a change in
translation magnitude ||t|| can always be counteracted by a
corresponding change in depth λ. As described in [16], (4)
enforces both the epipolar constraint and the law of sines
for the correspondence (x,x′). Thus (4) gives us one extra

1Note that this definition of depth is not the distance from the camera
to X , but rather to the plane in which X lies, i.e. the last coordinates of
X . See the supplementary material for details.



constraint in addition to the epipolar constraint. To see the
epipolar constraint, we multiply from the left with (x′)T and
notice that the first term vanishes, while from the second
term we recover exactly the epipolar constraint

σx′T[t]×x
′︸ ︷︷ ︸

≡0

− x′T[t]×Rx︸ ︷︷ ︸
epipolar constraint

= 0, (5)

where [t]× is the skew-symmetric matrix representation of
the cross-product. To see the law of sines, we apply the
2-norm to (4), which gives

σ ||t× x′|| = ||t×Rx|| , (6)

which is equivalent to the law of sines on the triangle in the
epipolar plane formed by the translation vector t and the
two projection rays x′ and Rx. We refer to the supplemen-
tary material for more details on this interpretation.

2.1. Solving for Relative Pose from Three Points

Solving for the relative pose (R, t) involves solving for five
degrees of freedom: three for rotation and two for transla-
tion (since translation magnitude is arbitrary). When using
pure point correspondences, i.e. (1), each correspondence
(xi,x

′
i), i ∈ [1, n] yields three equations while introducing

two new unknowns λi, λ
′
i, resulting in a net gain of a sin-

gle constraint. This allows the relative pose to be estimated
minimally from five correspondences [19].

If the relative depths σi = λ′
i/λi are known, each cor-

respondence only introduces a single new unknown λi,
see (2). Thus we have a net gain of two constraints per
correspondence. This reduces the number of correspon-
dences needed to solve a minimal problem to three, as the
number of constraints for n correspondences is now 2n.
In fact, three correspondences with relative depth is over-
determined by one constraint. In [16] the authors proposed
a solver for the minimal problem for 2+1 points, i.e. two
correspondences that have relative depth and one without.
The solver proposed in [16] parameterizes the rotation us-
ing Cayley parameterization and solves the resulting poly-
nomial equation system using Gröbner basis techniques.
In [16] the authors also consider a solver that use 1+3
points, i.e. four matches with one known relative depth. In
their experiments this performs worse while requiring more
matches.

In this section, we present an alternative formulation of a
solver for 2+1 points, which instead parameterizes the prob-
lem via the depths. This simplifies the equations and di-
rectly allow us to decompose the problem into solving two
quadratic equations that have closed-form solutions.

Given three correspondences, two of which have known

relative depth σ, we get three equations from (2),

σ1λ1x
′
1 = λ1Rx1 + t, (7)

σ2λ2x
′
2 = λ2Rx2 + t, (8)

λ′
3x

′
3 = λ3Rx3 + t. (9)

Since the global scale is unobservable, we can without loss
of generality set λ1 = 1. Then, forming the differences
(7)-(8), we have

σ1x
′
1 − σ2λ2x

′
2 = R(x1 − λ2x2). (10)

Since the rotation matrix preserves lengths, ∥u∥ = ∥Ru∥,

∥σ1x
′
1 − σ2λ2x

′
2∥2 = ∥x1 − λ2x2∥2, (11)

which gives us a quadratic equation in only λ2 that can be
solved in closed form. Next, similarly forming the differ-
ences (7)-(9) and (8)-(9), we have

∥σ1x
′
1 − λ′

3x
′
3∥2 = ∥x1 − λ3x3∥2, (12)

∥σ2λ2x
′
2 − λ′

3x
′
3∥2 = ∥λ2x2 − λ3x3∥2. (13)

For each solution of λ2, these are quadratic equations in λ3

and λ′
3. The key observation here is now that the quadratic

terms in λ3 and λ′
3 respectively, are the same in both equa-

tions. Thus forming their difference yields a linear equation

aλ3 + bλ′
3 + c = 0, (14)

where a, b ∈ R are constants that depend on λ2. Inserting
λ3 = −(bλ′

3+ c)/a into (12) we get a quadratic equation in
λ′
3 that can be solved in closed form.

In summary, from (11) we get two solutions for λ2,
and from each of these solutions we get two solutions for
(λ3, λ

′
3), for a total of four candidate relative poses. Once

the depths are recovered, we can easily solve for the rota-
tion using (10) and the corresponding equation from x1 and
x3. Following [21], the rotation matrix can be computed as

R = ZY−1,

Z = [z1, z2, z1 × z2],

Y = [y1, y2, y1 × y2],

z1 = σ1x
′
1 − σ2λ2x

′
2, z2 = σ1x

′
1 − λ′

3x
′
3,

y1 = x1 − λ2x2, y2 = x1 − λ3x3.

(15)

Once the rotation is known we can insert it into any of the
equations (7)-(9) to get the translation vector t. Note that if
the three points are co-linear, then y1 ∥ y2 and the matrix
Y becomes singular. In this case, the rotation matrix R
can not be recovered. In practice, this degeneracy seldom
occurs and can be ignored when using a robust estimator.
Permutations of Input Correspondences. Given three
points with relative scale information, we can select three



possible minimal 2+1 configurations (each using two of the
relative scales). As the relative scale is significantly less
accurate compared to the point coordinates, we can solve
each of the three permutations. In Section 4.1 we will show
that this significantly improves the accuracy.

2.2. Known Vertical Direction and Relative Depth

In many scenarios, the gravity (or vertical) direction is
known, for example from an Inertial Measurement Unit
(IMU) or vanishing point estimation. Knowing the vertical
direction in both coordinate systems reduces the degrees of
freedom in the rotation from three to one, as we have the
additional constraint Rg = g′, where g, g′ ∈ S2 are the
vertical directions in the two local coordinate systems. In
this case it becomes possible to solve for the relative pose
from two point correspondences, one of which has relative
depth information.

For the two correspondences, we have from (1) that

λ′
1x

′
1 − λ′

2x
′
2 = R(λ1x1 − λ2x2). (16)

Taking the scalar product with g′ we get

(g′)T(λ′
1x

′
1 − λ′

2x
′
2) = (g′)TR(λ1x1 − λ2x2)

= gT(λ1x1 − λ2x2),
(17)

since (g′)TR = (RTg′)T = gT. Thus, having a known
vertical direction directly gives a linear constraint on the
depths. As before, we can fix the scale with the first depth as
λ1 = 1, and use the relative depth to get λ′

1 = σ1. Solving
for λ′

2 in (17) gives

λ′
2(λ2) = λ2

gTx2

(g′)Tx′
2

+
σ1(g

′)Tx′
1 − gTx1

(g′)Tx′
2

, (18)

which is a linear function of λ2. Taking the norm on both
sides in (16) yields

∥σ1x
′
1 − λ′

2(λ2)x
′
2∥2 = ∥x1 − λ2x2∥2, (19)

which is a quadratic equation in λ2. This can be solved in
closed form and gives us at most two real solutions for λ2.

Once the depths are recovered we can solve for the ro-
tation as in (15), but here we can use the gravity directions
instead of y2 and z2 to get

R = ZY−1,

Z = [z, g′, z× g′],

Y = [y, g, y × g],

z = σ1x
′
1 − λ′

2x
′
2,

y = x1 − λ2x2.

(20)

We notice this solver has a degenerate case similar to the
3-point case; if g ∥ y, the matrix Y becomes singular and

g
g′

λ1 ||x1||

λ2 ||x2||

λ′
1 ||x′

1||

λ′
2 ||x′

2||

Figure 2. Degenerate case for the 2-point solver. When the two
points are on a line parallel to the known vertical direction, all
positions on the circle are valid poses.

the rotation can not be recovered. This is equivalent to the
two 3D-points being sampled from a vertical line parallel
to g in 3D-space, in which case all rotations around g are
possible solutions, see Figure 2.

3. Obtaining Relative Depth Estimates
3.1. Relative Depth from Keypoint Detection Scale

Scale-covariant detectors such as SIFT detect features at
different scale levels. This information can be used to
deduct an approximate relative depth. For a point corre-
spondence with feature scales s, s′ ∈ R+, we can define the
relative scale γ as

γ =
s

s′
. (21)

With known focal lengths f and f ′, we can relate relative
scale to relative depth σ as

σ =
s/f

s′/f ′ =
f ′

f
γ. (22)

In [16] the relative depth was directly approximated from
inverse relative scale. In our case, we show that they are
also related with the focal lengths. See the supplementary
material for a more detailed discussion of why (22) holds.

3.2. Learning Improved Relative Depth

As noted in [16], the relative scale estimation from SIFT
introduces errors that depend on the discretization in the al-
gorithm. In [16], this was solved by introducing a bisec-
tion search algorithm and running the evaluation for multi-
ple scales. However, this greatly increased the runtime of
the algorithm, making the total runtime significantly worse
than for the traditional 5pt-solver. Using the keypoint de-
tection scale also restricts which keypoint detectors can be
used. Many modern detectors (e.g. SuperPoint [9]) do not
estimate an explicit keypoint scale.

To improve the stability of our pose estimates, and al-
low for using our solvers with any keypoint detector, we
propose RelScaleNet, a neural network that predicts the rel-
ative depth directly from corresponding patches. While the



relative scale from SIFT is an approximation of the relative
depth relying on the assumption of fronto-parallel patches,
the proposed network has the opportunity to better han-
dle view-point dependent effects as it is directly supervised
with ground truth relative depth.

We base our model on HardNet [18] (which in turn is
based on L2-net [26]), but double the number of channels
and input size. We also remove the second convolutional
layer and replace the final convolution with two fully con-
nected layers with 256 and 1 output values, respectively, to
directly estimate γ. We supervise with MSE loss on the
ground truth relative scale γ∗. We train without batch nor-
malization and dropout since we are directly regressing a
value, and replace stride-2 convolutions with maxpool.

The ground-truth relative scale is calculated from
ground-truth relative depth σ∗ = λ′/λ as

γ∗ =
f

f ′σ
∗ =

f

f ′
λ′

λ
(23)

using known focal lengths. The network is supervised by di-
rectly measuring the squared discrepancy between the pre-
diction γ̂ and ground-truth, i.e. minimizing

L2 = |γ̂ − γ∗|2. (24)

We also explored other losses such as L1 and measuring
the 3D-consistency of the predicted scale (cf. (2)) but they
performed similarly or worse in our experiments.

4. Experiments
4.1. Evaluation on Synthetic Data

We first evaluate the proposed minimal solvers on synthetic
data. We generate random synthetic instances with two 90◦

field-of-view cameras viewing a scene with five points. For
each scene we also generate a synthetic gravity direction
used for the solvers in Section 2.2.
Numerical Stability and Runtime. First we compare
the proposed solvers (Section 2.1 and Section 2.2) with
the purely point-based solvers from Nistér et al. [19] (5-
point) and Sweeney et al. [25] (3-point with gravity). We
also compare with the relative-scale solver from Liwicki
et al. [16] (3-point with relative scale) which uses Cayley-
parameterization for the rotation matrix. Table 1 shows the
average runtime over 10 000 synthetic instances. The pro-
posed solvers have significantly lower runtime. Even run-
ning all permutations (Section 2.1) of the input is faster than
solving a single permutation using the solver from [16]. In
Figure 3 we show the distribution of pose errors (maximum
of rotation and translation error) for noise-free data. All
solvers exhibit good numerical stability.
Noise Sensitivity. Next we evaluate the impact of noise
in the relative-depth estimates. For each synthetic instance

we add zero-mean Gaussian noise to the keypoints with a
standard deviation corresponding to one pixel in an image
of size 2000 × 2000. We then vary the noise in the relative
depth estimate and evaluate the pose accuracy. Figure 4
shows the success rate (pose error less than 5◦) against the
noise level in the relative scale. We can see that running
all permutations greatly reduce the impact of noise in the
relative depth.

4.2. Training of RelScaleNet

Dataset. We train RelScaleNet for relative scale estimation
on the Image Matching Challenge PhotoTourism (IMC-PT)
dataset [13], which consists of outdoor images of tourist at-
tractions, captured from a wide variety of viewpoints and
lighting conditions. We use the 2021 train/val split [2] (ex-
cluding the scenes removed for the 2022 challenge [1]), giv-
ing us ten training scenes and three validation scenes. Since
the provided keypoints did not include SIFT scale informa-
tion, new keypoints were detected using the SIFT algorithm
implemented in COLMAP [24] and matched using exhaus-
tive matching. The provided ground-truth poses and camera
calibrations were used to triangulate 3D-points correspond-
ing to the new keypoints. Points triangulated to behind the
cameras were filtered away. For each scene in the train-
ing set, a maximum of 20 000 camera pairs were uniformly
sampled from all camera pairs with at least 100 common in-
lier keypoints and used for training. Outliers were then fur-
ther filtered by checking that Sampson error with ground-
truth pose was less than one pixel. Sampled camera pairs
with less than 100 common inliers remaining after this fil-
tering were discarded. From the remaining matches, ten
correspondences were uniformly sampled for each image
pair, resulting in a total of 1.8 M training samples. Patches
of size 64× 64 pixels were extracted centered around each
keypoint. When training the network, pairs of patches were
concatenated into tensors with shape 64 × 64 × 6. For hy-
perparameter tuning, the network was evaluated on the val-
idation split of IMC-PT. Validation data was sampled the
same way as training data, except all inlier matches were
included.
Training Details. Training was done with stochastic gra-
dient descent (SGD) with a starting learning rate of 10−4,
momentum of 0.9 and weight decay of 10−4. The batch
size was 1024 and training was done for 100 epochs with
learning rate decimated every 20 epochs.

Since relative depth estimation should be equivariant to
permutation, we augmented the training data with a 50%
chance of switching the order of patches, and replacing the
label with its reciprocal. We further augment with 50%
chance of horizontally flipping each training sample, as
well as augmenting brightness, contrast, saturation and hue
through pytorch’s “ColorJitter” [20] function with with the
respective parameters set to 0.3.



Solver runtime

p σ Solver Absolute Relative Solutions

General
motion

1 2 Depth This paper 0.3 µs 1.0x 3.4
0 3 Depth+Perm. This paper 0.8 µs 2.7x 10.3
1 2 Cayley param. Liwicki and Zach [16] 2.2 µs 7.3x 4.0
5 0 Essential mat. Nistér [19] 3.2 µs 10.7x 4.4

Known
vertical

1 1 Depth This paper 0.13 µs 1.0x 1.7
0 2 Depth+Perm. This paper 0.25 µs 1.9x 3.4
3 0 QEP Sweeney et al. [25] 0.46 µs 3.5x 2.1

Table 1. Runtime statistics for the minimal solvers. Table shows the median runtime over 10,000 synthetic instances which have an
exact solution. For each solver the number of point correspondences with scale (σ) and without scale (p) is shown. The proposed 3-point
solver for general motion, using depth-based parameterization, is significantly faster compared to the Cayley-based solver from [16]. The
proposed 2-point solver for known vertical direction is significantly faster compared to the QEP-based solver from [25]. All experiments
were run on a desktop computer with an Intel i7-12700KF CPU.
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Figure 4. Solver noise sensitivity. The success rate (error less
than 5◦) for varying noise in the relative depth.

4.3. Evaluation of Relative Depth

Next we evaluate the accuracy of relative depth estimates,
both those obtained via keypoint detection scales (from
SIFT) and from the proposed RelScaleNet. We evaluate on
held-out data from IMC-PT and ScanNet [8]. The latter
contains indoor scenes and is quite different from the train-

ing data, and we use this to illustrate our model’s ability
to generalize. For IMC-PT we use the nine 100-image test
sequences from the 2021 Image Matching Challenges [2].
We detect and match SIFT keypoints for all image pairs in
the same way as for the training data. For ScanNet we fol-
low the evaluation protocol from Sarlin et al. [23] to extract
1500 image pairs from the test set.

To evaluate the relative depth prediction, we collect all
inlier correspondences with respect to the ground-truth rel-
ative pose for all test pairs in both datasets, again using the
Sampson error. Using the ground-truth poses we compute
the ground-truth relative depths via triangulation. Table 2
shows the errors in the estimated relative depth, i.e.

Eσ =

∣∣∣∣γ̂ f ′

f
− σ∗

∣∣∣∣ . (25)

We also include the errors obtained with scales from both
SIFT [17] and the network from Lee et al. [15] for predict-
ing keypoint scale. Firstly, we see that the predicted rela-
tive depth is more accurate compared to both the scale from
SIFT and Self-Sca-Ori [15]. Secondly, despite being trained
on only outdoor images from the IMC-PT training set,
the network generalizes to the indoor images from Scan-
Net [8]. Finally, we evaluate the relative depth prediction
for matches obtained with SuperPoint+SuperGlue [9, 23].
While the accuracy of the estimate degrades (as we only
trained on SIFT keypoints), almost half of correspondences
are within 10% scale error. In Figure 5 we show a quali-
tative comparison of the estimated depths as heatmaps. In
the supplementary material, we present additional qualita-
tive results, including per-scene results.

4.4. Evaluation with RANSAC

Finally we evaluate the solvers in RANSAC for robust es-
timation of relative pose. We integrate them into an LO-
RANSAC [14] framework and GC-RANSAC [4]. The rel-
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≤ 10 000 for better visualization.

Accuracy

Method Med.↓ @0.05↑ @0.1↑ @0.2↑

IM
C

-P
T

SI
FT

SIFT 0.063 0.41 0.69 0.92
Self-Sca-Ori [15] 0.274 0.12 0.22 0.40
RelScaleNet [OURS] 0.033 0.65 0.86 0.97

Sc
an

N
et

SI
FT

SIFT 0.071 0.38 0.64 0.88
Self-Sca-Ori [15] 0.120 0.27 0.45 0.66
RelScaleNet [OURS] 0.044 0.55 0.80 0.94

SP
+S

G Self-Sca-Ori [15] 0.201 0.19 0.32 0.50
RelScaleNet [OURS] 0.114 0.27 0.46 0.68

Table 2. Evaluation of relative depth estimates. The table
shows the median error and accuracy at different thresholds in
the estimated relative depth for the IMC-PT [13] and ScanNet [8]
datasets. The proposed RelScaleNet provides the most accurate
relative depth estimates. For comparison, we also include the
predicted relative depth for SuperPoint+SuperGlue keypoints on
ScanNet. Note that RelScaleNet was only trained on SIFT corre-
spondences.

ative depth estimates are only used for generating candi-
date poses in RANSAC, and the model scoring/refinement
is based purely on the point-correspondences. We explored
using the relative depth estimates also for scoring and re-
finement, but were not able to get any improvement, likely
due to the much higher noise levels. For the experiments we
again consider the test set from IMC-PT and ScanNet as in
Section 4.3.
PhotoTourism. Table 3 shows the aggregate statistics
for the nine scenes in IMC-PT (individual results can be
found in the supplementary material). We compute the
Area-Under-Curve (AUC) of the pose error (max of rota-
tion and translation error) up to some threshold as a per-

centage of the full square.2 The proposed methods have
slightly lower AUC compared to the 5-point solver, both
with SIFT and predicted relative depth, with comparable
runtimes. However, the dataset has quite high inlier ratio
overall (median 78%) so the benefit of the smaller minimal
sample size is diminished. To highlight this, we also show
the statistics for the top-5 % hardest image pairs (lowest
inlier ratio w.r.t. ground truth pose), which have a median
inlier ratio of 17 %. In this case, the runtime discrepancy
between the 5-point solver and the 3-point becomes much
more significant. We also compare with the SIFT-based
3-point solver from Barath and Kukelova [3]. The experi-
ments show that the proposed solver using the relative depth
constraints provide more accurate camera poses. Compar-
ing LO-RANSAC to GC-RANSAC, we can see that since
GC-RANSAC is more robust to poor candidate models, the
gap between the two solvers is smaller.
ScanNet. Table 4 shows the results on ScanNet. This is a
much more challenging dataset compared to IMC-PT, with
a median inlier ratio of 16 % for SIFT, and 17 % for SP+SG,
and we can again see that our methods achieve slightly
worse accuracy compared to the 5-point solver, while hav-
ing significantly lower runtimes.

To evaluate the solvers for known vertical direction from
Section 2.2, we generate a synthetic gravity direction in
each image using the ground-truth rotation. Table 4 also
shows a comparison with the 3-point solver from Sweeney
et al. [25]. As the difference in sample-size (three vs. two)
is smaller than for the general motion solvers, the difference
in runtime is also smaller.

Finally, we also evaluate on ScanNet with Super-
Point+SuperGlue [9, 23] keypoints and matches. In this
case, we get improvements in both accuracy and runtime,
compared to the 5-point solver. We visualize the cumula-
tive distributions for the RANSAC experiments in Figure 6.

5. Conclusion

In this paper we have proposed new solvers for estimat-
ing the relative pose from point correspondences that have
point-wise relative depth information. The relative depth
can either be approximated as the relative scale from key-
point detectors, or as we show predicted from pair-wise
patches with a neural network. Our experiments have
shown that integrating relative depth information can re-
duce the runtime in RANSAC, by requiring fewer iterations
to generate good candidate poses. While the relative poses
we obtain are generally noisier, there are cases (SP+SG on
ScanNet) where we see an improvement in both accuracy
and runtime compared to the traditional 5-point solver.
Acknowledgements. The project received funding from the
strategic research project ELLIIT.

2In the supplementary material we also report mAA@10◦.
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Figure 6. Cumulative pose error and runtimes on IMC-PT [13] and ScanNet [8]. For IMC-PT we report results for all image pairs,
and for only the top-5% hardest image pairs. For ScanNet, we report results using SIFT-keypoints and SP+SG [9, 23] keypoints.

All image pairs Top-5% hardest pairs

RANSAC Method AUC@5◦ AUC@10◦ AUC@20◦ RT(ms) AUC@5◦ AUC@10◦ AUC@20◦ RT(ms)

L
O

-R
SC

5 pt. (Nistér [19]) 56.89 70.43 80.39 15.7 12.13 21.79 33.55 42.2
3 pt. + SIFT (Barath & Kukelova [3]) 30.77 39.02 46.98 7.0 1.23 3.03 6.25 21.3
3 pt. + SIFT [OURS] 54.30 67.80 78.16 13.4 8.72 16.76 28.61 2.8
3 pt. + RelScaleNet [OURS] 54.63 68.06 78.16 15.0 9.47 18.04 29.69 2.8

G
C

-R
SC

5 pt. (Nistér [19]) 56.22 69.87 79.99 25.4 9.76 18.82 31.12 16.5
3 pt. + SIFT (Barath & Kukelova [3]) 50.55 63.74 74.10 11.1 2.16 5.59 11.37 6.0
3 pt. + SIFT [OURS] 52.73 66.62 77.38 16.2 5.24 11.71 21.83 4.7
3 pt. + RelScaleNet [OURS] 53.11 67.01 77.72 16.8 5.65 12.69 23.07 4.7

Table 3. Relative pose estimation on IMC-PT [13]. The best and second best method in each category is highlighted. We compare solvers
using both LO-RANSAC [14] (LO-RSC) and GC-RANSAC [4] (GC-RSC) as the robust estimator. We also show the results restricted to
the top-5% hardest image pairs (defined by outlier ratio w.r.t. the ground truth pose). For high outlier instances, the average runtime of the
5-point method is significantly higher compared to our 3-point method.

KP. Method AUC@5◦ AUC@10◦ AUC@20◦ Runtime (ms)

SI
FT

[1
7]

5 pt. (Nistér [19]) 11.06 21.99 33.32 8.2
3 pt. + SIFT (Barath & Kukelova [3]) 4.94 10.33 17.16 3.7
3 pt. + SIFT [OURS] 9.90 20.59 31.96 2.9
3 pt. + RelScaleNet [OURS] 10.43 21.21 32.43 2.9

3 pt. + Gravity (Sweeney et al. [25]) 13.31 26.50 40.50 1.8
2 pt. + Gravity + SIFT [OURS] 12.53 25.27 39.17 1.4
2 pt. + Gravity + RelScaleNet [OURS] 12.65 25.73 39.37 1.4

SP
+S

G
[9

,2
3] 5 pt. (Nistér [19]) 17.55 34.21 51.50 59.4

3 pt. + RelScaleNet [OURS] 18.39 35.46 52.24 10.4

3 pt. + Gravity (Sweeney et al. [25]) 20.86 39.00 57.07 7.6
2 pt. + Gravity + RelScaleNet [OURS] 20.05 38.12 56.24 6.5

Table 4. Relative pose estimation on ScanNet [8]. The best and second best method in each category is highlighted. For the experiments
with known vertical we generate the gravity direction synthetically using the ground truth rotation. Note that the SIFT-based solvers can
only be run when using SIFT keypoints.
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[t,Rx] [t,x′]

λ ||x|| λ′ ||x′||

||t||

X

C1 C2

Figure 7. Law of sines in the epipolar plane. The epipolar ge-
ometry forms a triangle in the epipolar plane, with corners in X ,
C1, and C2. The law of sines on the triangle gives (27).

6. Law of Sines Constraint
Here we show that (6) in Section 2 is equivalent to the law
of sines. For convenience, we repeat (6) here:

σ ||t× x′|| = ||t×Rx|| .

Dividing both sides by ||t× x′|| and substituting σ = λ′/λ
gives

λ′

λ
=

||t×Rx||
||t× x′||

=
||t|| ||x|| |sin [t,Rx]|
||t|| ||x′|| |sin [t,x′]|

, (26)

where [·, ·] denotes the angle between two vectors. This
angle can be assumed to be between 0° and 180°, so the
absolute value can be removed. Then we can rewrite (26)
as

sin [t,x′]

λ ||x||
=

sin [t, Rx]

λ′ ||x′||
, (27)

which is exactly the law of sines on the triangle in Figure 7.

7. Recovering Relative Depth from Scales
In this section, we explain how to recover relative depth
from image scales. Consider a feature at point X in 3D-
space, with radius r, and let the point be at a distance d
from the camera C, see Figure 8. Assume the feature is
projected to an image at scale (radius) s. The correspond-
ing scale in the normalized image plane z1 = 1 will be
s/f , where f is the focal length. The projection point in
the normalized image plane according to the pinhole cam-
era model is x such that λx = X , i.e. X is in the plane

C z1 = 1 z2 = λ

r

s/f
x

X

x̃

X̃

Figure 8. Pinhole camera projection. A feature of radius r in 3D
space is projected into a feature of radius s in the image, equivalent
to s/f in the normalized image plane. From similarity of triangles,
we infer (28) and (29).

z2 = λ. From Figure 8 we see that similarity of triangles
△Cxz1 and △CXz2 gives

1

λ
=

||x||
d

. (28)

Now, let x̃ = x − (0, s/f, 0) and X̃ = X − (0, r, 0)
be points at the edge of the feature at x and X , respec-
tively. Due to similarity of triangles △Cxx̃ and △CXX̃
(see again Figure 8) we have

||x||
d

=
s/f

r
. (29)

By combining (28) and (29), we get

1

λ
=

s/f

r
. (30)

For two corresponding projections of the same feature, we
can write the relative depth as

σ ≡ λ′

λ
=

s/f

s′/f ′
r

r
=

f ′

f

s

s′
=

f ′

f
γ, (31)

where we have used that r is independent of the projection.

8. Additional Experiment Details
When we evaluated the relative depth prediction in Sec-
tion 4.3, we used a Sampson error inlier threshold of 1.0
for IMC-PT and 1.5 for ScanNet. When evaluating the
solvers using RANSAC in Section 4.4, we used the param-
eters specified in Table 5.

The inference time of RelScaleNet was 55 µs per patch-
pair when running with a batch size of 1024 on an NVIDIA
RTX 3080 Ti.



Parameter IMC-PT ScanNet

Minimum iterations 1000 1000
Maximum iterations 100 000 100 000
Required confidence 0.9999 0.9999
IMC Inlier threshold 0.75 1.5

Table 5. RANSAC parameters used in our experiments. Differ-
ent inlier thresholds were used for the two datasets IMC-PT and
ScanNet.

9. Additional Results on IMC-PT
Here we present evaluation results on IMC-PT [13] divided
by scene, for our solver and for the 5-point solver in LO-
RANSAC. Additionally, we report mAA@10◦. In Table 6,
we present the results for the full set of image pairs; in Ta-
ble 7, we present results for the top-5% hardest image pairs.
In both tables, the average inlier ratio for each scene is also
presented. We note that for scenes with low average inlier
ratio (less than approximately 70 %), our 3-point solver is
consistently faster than the 5-point solver.

Individual qualitative comparison of σ-estimation using
RelScaleNet or SIFT is presented in Figures 9 and 10.



Scene Inliers (%) Method AUC@5◦ AUC@10◦ AUC@20◦ mAA@10◦ RT(ms)

MR 87.26
5 pt. (Nistér [19]) 45.43 59.60 72.47 63.31 19.6
3 pt. + SIFT [OURS] 44.52 58.60 71.41 62.31 16.7
3 pt. + RelScaleNet [OURS] 44.38 58.11 70.63 61.74 19.1

MC 83.33
5 pt. (Nistér [19]) 64.42 78.77 88.03 83.50 18.5
3 pt. + SIFT [OURS] 62.78 77.62 87.23 82.24 19.4
3 pt. + RelScaleNet [OURS] 63.66 78.12 87.51 82.80 22.7

FCS 82.77
5 pt. (Nistér [19]) 71.03 81.68 88.78 85.90 19.9
3 pt. + SIFT [OURS] 70.11 81.09 88.42 85.31 21.0
3 pt. + RelScaleNet [OURS] 70.34 81.30 88.59 85.54 22.6

LMS 78.16
5 pt. (Nistér [19]) 61.29 70.68 77.17 74.29 11.4
3 pt. + SIFT [OURS] 58.28 67.17 73.84 70.59 11.0
3 pt. + RelScaleNet [OURS] 54.02 62.69 69.19 65.98 11.6

BM 76.88
5 pt. (Nistér [19]) 47.09 65.45 79.16 69.88 14.7
3 pt. + SIFT [OURS] 43.38 61.43 75.79 65.71 13.0
3 pt. + RelScaleNet [OURS] 45.87 63.90 77.70 68.27 16.0

SF 75.43
5 pt. (Nistér [19]) 58.78 72.03 81.28 76.33 18.2
3 pt. + SIFT [OURS] 57.30 70.63 80.19 74.88 13.5
3 pt. + RelScaleNet [OURS] 57.06 70.26 79.74 74.51 14.0

LB 75.00
5 pt. (Nistér [19]) 58.08 72.08 82.27 76.31 14.5
3 pt. + SIFT [OURS] 52.44 66.41 77.64 70.42 12.0
3 pt. + RelScaleNet [OURS] 55.92 70.14 80.63 74.29 13.5

SPC 67.02
5 pt. (Nistér [19]) 60.00 74.15 84.03 78.54 13.3
3 pt. + SIFT [OURS] 57.96 72.18 82.46 76.46 9.5
3 pt. + RelScaleNet [OURS] 58.60 72.65 82.72 76.94 10.1

PSM 61.87
5 pt. (Nistér [19]) 46.05 59.19 69.77 62.78 20.0
3 pt. + SIFT [OURS] 40.65 53.19 64.55 56.62 6.8
3 pt. + RelScaleNet [OURS] 41.47 54.63 65.90 58.08 6.9

All 78.21
5 pt. (Nistér [19]) 56.89 70.43 80.39 74.59 15.7
3 pt. + SIFT [OURS] 54.30 67.80 78.16 71.85 13.5
3 pt. + RelScaleNet [OURS] 54.63 68.06 78.16 72.12 15.0

Table 6. Per-scene evaluation on IMC-PT [13]. The scenes are sorted in order of descending inlier ratio. The best and second best
method in each category and metric is highlighted.



Scene Inliers (%) Method AUC@5◦ AUC@10◦ AUC@20◦ mAA@10◦ RT(ms)

MR 55.39
5 pt. (Nistér [19]) 19.98 31.46 46.01 33.80 7.5
3 pt. + SIFT [OURS] 17.40 29.35 43.91 31.52 4.0
3 pt. + RelScaleNet [OURS] 17.21 27.68 41.83 29.70 4.4

BM 45.00
5 pt. (Nistér [19]) 30.52 46.04 63.10 49.22 8.1
3 pt. + SIFT [OURS] 22.33 36.90 53.16 39.88 3.7
3 pt. + RelScaleNet [OURS] 25.21 37.55 53.56 40.33 3.9

MC 42.64
5 pt. (Nistér [19]) 32.10 49.69 65.84 53.41 13.0
3 pt. + SIFT [OURS] 28.10 45.67 61.71 49.07 5.1
3 pt. + RelScaleNet [OURS] 29.76 47.49 63.39 50.93 5.4

LMS 40.91
5 pt. (Nistér [19]) 10.03 15.95 24.28 17.00 6.4
3 pt. + SIFT [OURS] 8.32 14.00 23.11 14.75 2.5
3 pt. + RelScaleNet [OURS] 7.49 13.22 21.94 14.04 2.4

FCS 32.31
5 pt. (Nistér [19]) 21.73 35.03 48.98 37.66 15.1
3 pt. + SIFT [OURS] 18.09 31.42 46.21 33.92 8.7
3 pt. + RelScaleNet [OURS] 20.60 34.91 48.57 37.52 9.1

LB 31.33
5 pt. (Nistér [19]) 25.72 37.44 49.80 40.21 25.7
3 pt. + SIFT [OURS] 14.74 23.08 35.59 24.76 3.1
3 pt. + RelScaleNet [OURS] 22.24 32.14 43.86 34.34 3.0

SPC 18.44
5 pt. (Nistér [19]) 8.36 17.64 31.89 19.04 55.0
3 pt. + SIFT [OURS] 7.54 15.45 29.23 16.61 3.9
3 pt. + RelScaleNet [OURS] 5.25 13.19 26.75 14.27 3.6

SF 13.33
5 pt. (Nistér [19]) 6.84 10.96 15.53 11.66 42.1
3 pt. + SIFT [OURS] 5.52 8.99 13.78 9.59 2.1
3 pt. + RelScaleNet [OURS] 3.18 6.99 10.94 7.51 2.2

PSM 1.88
5 pt. (Nistér [19]) 1.84 4.24 9.43 4.49 64.5
3 pt. + SIFT [OURS] 1.13 3.04 10.03 3.32 2.7
3 pt. + RelScaleNet [OURS] 2.43 5.35 11.13 5.76 2.6

All 16.67
5 pt. (Nistér [19]) 12.13 21.79 33.55 23.57 42.2
3 pt. + SIFT [OURS] 8.72 16.76 28.61 18.30 2.8
3 pt. + RelScaleNet [OURS] 9.47 18.04 29.69 19.72 2.8

Table 7. Per-scene evaluation of top-5% hardest pairs from IMC-PT [13]. The scenes are sorted in order of descending inlier ratio.
The best and second best method in each category and metric is highlighted.
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Figure 9. Per-scene comparison of estimated relative depths. The heatmaps show qualitative differences in estimated relative depths
(σ) compared to the ground-truth, using SIFT or RelScaleNet on the test scenes in IMC-PT [13]. We present both linear and logarithmic
heatmaps. The dashed red line shows where estimation is equal to ground truth, i.e. perfect estimation.
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Figure 10. Per-scene comparison of estimated relative depths. The heatmaps show qualitative differences in estimated relative depths
(σ) compared to the ground-truth, using SIFT or RelScaleNet on the test scenes in IMC-PT [13]. We present both linear and logarithmic
heatmaps. The dashed red line shows where estimation is equal to ground truth, i.e. perfect estimation.
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